CORRECTIONS

J. F. Marko* and E. D. Siggia: Bending and Twisting Elasticity of DNA. Volume 27, Number 4, February 14, 1994, pp 981–988.

In a previous paper,¹ we incorrectly discussed cubic nonlinear terms in a model for the elastic free energy of weakly distorted double-helix DNA. At the top of p 983, we state that only A_{111} , A_{123} , A_{133} , and A_{122} are nonzero; in fact, these are the terms which are zero, since they multiply terms which change sign under the symmetry operation $\{\Omega_1,\Omega_2,\Omega_3\} \rightarrow \{-\Omega_1,\Omega_2,\Omega_3\}$. The nonzero elastic constants are those multiplying terms with even powers of Ω_1 , namely A_{112} , A_{222} , A_{113} , A_{223} , A_{233} , and A_{333} .

This error is repeated at the bottom of p 985, where the cubic correction of the elastic energy is computed. When the perturbative calculation (evaluation of eq 23 of 1 along the trajectory $\phi(s) = \omega s + \phi(0)$) is followed using the correct cubic terms, the 113, 223, and 333 terms contribute to the free energy at cubic order in κ and $\langle \Omega_3 \rangle$. The complete effective elastic energy (eq 22 of ref 1) including these terms is

$$\begin{split} \frac{F}{kT} &= \frac{1}{2} \int \mathrm{d}s \left\{ \left(A - \frac{D^2}{2\,C} \right) \! \kappa^2 + \left. C \! \langle \Omega_3 \rangle^2 \right. + \\ & \left. \left(\frac{D^2}{C\omega_0} + \frac{1}{2} [A_{113} + A_{223}] \right) \! \kappa^2 \! \langle \Omega_3 \rangle + \frac{1}{3} A_{333} \! \langle \Omega_3 \rangle^3 \right\} \end{split}$$

The final 333 term is simply a consequence of chirality of the double helix: left- and right-handed twists are distinguishable. The 113 and 223 terms combine to generate a coupling between the square of curvature and mean twist which adds to the $D^2/C\omega_0$ contribution. Since the double-helix bending modulus should only change significantly for twists $\langle \Omega_3 \rangle \approx \omega_0$), we expect these two terms to be on the same order. However, the signs of the 113 and 223 terms are not a priori determined, in contrast to that of the $D^2/C\omega_0$ term. Therefore, it is possible that the net coefficient of $\kappa^2\langle\Omega_3\rangle$ is negative and that a net overtwisting could result from DNA bending.²

References and Notes

- (1) Marko, J. F.; Siggia, E. D. Macromolecules 1994, 27, 981.
- (2) Overtwisting in response to a tight bend introduced into a detailed elastic model of DNA has been reported: Levitt, M. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 640.

MA9520104